
CSS in a Bottle, v.2 1 of 10

CSS in a Bottle, v.2
An introduction to Cascading Style Sheets (CSS), intended for employees of Automark Web Services
by David Stiller
(Last updated 10/14/2002)

Introduction... 1
CSS Defined.. 1
Basics .. 2

Style Attribute ... 2
Style Tag... 2
Selector Rules ... 2
Declaration Properties... 3
Pause for Inheritance... 3
Valuing and Extending HTML... 3

The Next Step.. 4
Class Rules .. 4
External CSS ... 4
Rule Grouping... 5

Inheritance Revisited... 6
Matter of Font ... 6
Contextual Inheritance .. 7
Child Inheritance... 8

Coding Guidelines... 9
Rule Appearance ... 9
Commenting.. 9
Pratfalls ... 9

Additional Resources .. 9
Websites.. 9
Reference .. 10

Introduction
If this is your first foray into CSS, either through Automark’s eyes or your own, this
document will clarify definitions, dispel myths, and excite you into visually enhancing
your HTML code in a powerful and economical manner. If this is your second go-
around, this document will overhaul your familiar habits. The increased efficiency is
worth the challenge.

CSS Defined
According to the W3C, “Cascading Style Sheets (CSS) is a simple mechanism for adding
style (e.g. fonts, colors, spacing) to Web documents.” As described by WebMonkey.com,
CSS is “an elegant cousin to HTML,” and for good reason. Written in simple text—just
like HTML—CSS dramatically expands and improves your formatting control over web
content. You are freed from the limited font sizes of HTML (the mere
through). You can establish line spacing (leading), alignment,
padding, borders, layers, colors, and more. CSS reduces download times by thinning out
HTML and governs whole sites with a single file.

CSS in a Bottle, v.2 2 of 10

Basics

Style Attribute
At its most basic, you can add CSS to any given line of HTML by including the style
attribute in a tag. This is effectively like using the tag, but current W3C
recommendations favor CSS. NOTE: Automark does not generally use the style
attribute method for DCMS because it is not conducive to template-driven sites, but it’s
good to learn. (See Selector Rules below for attribute syntax.)

Style Attribute
<p>This text appears plain.<p>
<p style="color: #00FF00; font-weight: bold;">This text appears
green and bold.<p>

Style Tag
To apply attributes to all instances of a given tag—which is more likely and more
powerful—just convert the style attribute to a tag itself and place it inside the <head>
tag of your HTML document, then specify which HTML tags you’d like to enhance by
defining them with selector rules. You may specify as many selectors as you wish.

Style Tag
...
 <style>
 p {
 color: #00FF00;
 font-weight: bold;
 }
 b {
 color: #FF0000;
 font-style: italic;
 }
 </style>
</head>

<body>
<p>This text, and all P text, appears green and bold. This
portion of the text appears red and italic, because of the
properties set for B; it also appears bold because of the inherent
styling of B.</p>

...

Selector Rules
A rule is comprised of several parts. In the case of
selector rules, the first part is the selector, which
represents the HTML tag to be enhanced. The
selector is followed by a number of declarations
surrounded by curly braces ({ … }), which are
further comprised of two parts, properties and their
values. These pairs are separated by a colon (:)
and declarations are separated by a semi-colon (;).

Anatomy of a Selector Rule

p { ← selector
 color: #FF0000;
 font-weight: bold;
} ↑ declarations
 (properties: values;)

CSS in a Bottle, v.2 3 of 10

Declaration Properties
How many properties are there? In truth, many—but not all are available to all browsers.
In general, Automark sticks to a “safety” group of properties which are valid in Internet
Explorer and Netscape 4.x and 6+, with a few exceptions that work in Internet Explorer
only, or in IE and Netscape 6+. These exceptions are allowed because they don’t actually
“break” anything in Netscape 4.x, but merely fail to display.

Our in-house tool of choice for CSS is TopStyle. This application features
“intellisense” code hints and color formatting, and offers convenient segregation of
properties by browser acceptance and usage category. TopStyle calls these groupings
“style definitions” and Automark uses the “Netscape 4 and IE 4” style definition.

Pause for Inheritance
Before we forge ahead, let’s consider the issue of inheritance. In the above Style Tag
example, note that the properties of the b selector’s declarations are passed to all
tags on the page—you could say the tags inherit these properties. Note also that
although the b selector does not specify font weight, all tag content is still bold,
because a normal tag is bold intrinsically. Therefore:

• Inheritance passes all properties to its children that are not already specified
otherwise.

If this example had included the declaration font-weight: normal; the bold would
have been overridden.

Valuing and Extending HTML
Automark’s current approach to CSS acknowledges the formatting inherent in HTML,
then extends it. Where possible, use what’s already there. The tag, for instance,
renders bold whatever text it surrounds. The <h> tags render text as bolded headings,
and depending on the number value specified, headings of a respective font size.

HTML Bold
This text appears plain.
This text appears bold.

HTML Heading
<h1>Bold, largest heading.</h1>
<h2>Bold, slightly smaller.</h2>
<h3>Bold, smaller Still, and so on.</h3>

By tapping into these existing characteristics, we can reduce certain aspects of CSS
coding. For example, let’s define a header style from scratch, then see where we can
consolidate. NOTE: This example uses a different kind of rule (see Class Rules below),
but don’t be thrown by it—obviously, there is no <exampleHeader> tag.

CSS Header Style from Scratch
.exampleHeader {
 font-family: Arial;
 font-size: 20px;
 font-weight: bold;
}

We want a header in 20px Arial with a bold font weight, and that’s what these
declarations provide. If we had extended an <h> tag instead, we could have omitted the

CSS in a Bottle, v.2 4 of 10

font-weight property since it is built into the <h> tag innately. In this case we only
save one line, but the combined result of many saved lines can make a difference. We
have the additional benefit of “insurance” in case the CSS fails to load: since the <h> tag
actually is a header, it will look like a header even without the style enhancements.

CSS Header Style that Extends HTML
h1 {
 font-family: Arial;
 font-size: 20px;
}

The Next Step

Class Rules
Sometimes selector rules aren’t enough. Think of a table with alternating row colors: by
using selector rules, at best you could define the properties for <th> and <td> tags
alone, which is simply not enough control (all the <td>s would look the same).

Class rules provide the answer. They are
essentially “custom” rules that can apply to any
number of HTML tags. Class rules are laid out the
same as selector rules, except the class name itself is
preceded by a dot (.) and you must reference the
rule in your HTML tags with a class attribute.
Inheritance, as described above, is still in effect; that
is, if you apply a class for red coloring to a <p> tag
its content would be red, while the same class applied to a tag would display its
content as red and bold, because the content inherits both the declarations of the class and
the inherent style of the tag in which it resides. For this reason, depending on intended
results, it is prudent to state explicitly which properties to define in a class rule’s
declarations (i.e., specify font-weight: normal; where you want to avoid bold in all
cases, regardless of the HTML tag’s innate styling).

Class Rule Referenced in HTML Tags
<p class="example">This would pick up the properties of the
declarations in the .example class rule.</p>

<td class="example">This would do the same.</td>

External CSS
To get the widest reaching control over styling, it’s best to draw from rules that are
completely separate from the HTML document. This is actually quite easy: remove the
rules listed in the <style> tags in the document’s head and paste them into a new text
file. Save the text file as [filename].css. Now link out to this file from the HTML page
with a <link> tag in the document’s head.

Linked External CSS File
...
 <link rel="stylesheet" type="text/css" href="[filename].css">
</head>

Anatomy of a Class Rule

.myClass { ← class
 color: #FF0000;
 font-weight: bold;
} ↑ declarations
 (properties: values;)

CSS in a Bottle, v.2 5 of 10

Since they are simply text, CSS files may actually be saved with any extension. At
Automark, we save CSS files with an .asp extension to allow for the possibility of future
dynamic treatment. As of this writing, the total number of CSS files used in DCMS is
undetermined, but you are likely to at least see cssmaster.asp. This file would be linked
out as follows:

Linked External CSS File with ASP Extension
<link rel="stylesheet" type="text/css" href="cssmaster.asp">

Rule Grouping
If you can kill two birds with one stone, do it. Selectors and classes whose rules feature
identical properties can be combined with a comma. Let’s take the example of a class
rule intended for an anchor tag. Anchor tags, since they represent hyperlinks, are good
candidates for pseudo classes, which include “states” of a rule. The following is
syntactically correct, but it takes up 24 lines.

Superfluous Class Rules
.navTop:link {

font-family: Verdana;
font-weight: bold;
color: #000000;
text-decoration: none;

}
.navTop:visited {

font-family: Verdana;
font-weight: bold;
color: #000000;
text-decoration: none;

}
.navTop:active {

font-family: Verdana;
font-weight: bold;
color: #FF0000;
text-decoration: underline;

}
.navTop:hover {

font-family: Verdana;
font-weight: bold;
color: #FF0000;
text-decoration: underline;

}

Note that the properties overlap in many of these declarations. In fact, the only visual
differences between the state of :link and :visited classes versus the state of :active
and :hover classes are the lack or presence of an underline and a change in color. These
rules cause the ir respective anchor tags to display an underline and appear red while the
mouse hovers or clicks on the tag’s content, but not otherwise.

The consolidated version is clearly more efficient, weighing in at a mere 12 lines (see
next page).

Pseudo Classes

Certain tags, like
anchors (<a>), feature
a number of "states" (for
example, the mouse is
hovering over the content
of this tag; now it is
clicking, etc.). In CSS,
pseudo classes allow you
to set styles specific to
these states. Pseudo
classes are preceded with
a colon (:) and follow
selectors or classes in a
rule.

CSS in a Bottle, v.2 6 of 10

Consolidated Class Rules
.navTop {

font-family: Verdana;
font-weight: bold;

}
.navTop:link, .navTop:visited {

color: #000000;
text-decoration: none;

}
.navTop:active, .navTop:hover {

color: #FF0000;
text-decoration: underline;

}

The first rule covers .navTop only (no pseudo classes), which covers all states and
sets the properties common to all declarations. The :link and :visited states are
grouped, since they’re the same, as are :active and :hover. In each case, we have
specified only the information that changes.

If navTop anchors are intended to inherit the base font of the whole document, we
could omit the font-family property and shorten our code yet again.

Inheritance Revisited

Matter of Font
Headings provide a strong case for understanding and effectively using inheritance. In
the past, every DCMS heading (typically a class rule) would define its own font size.
The problem with this approach is that it left us with “hard coded” headings, which meant
that if we changed the size of the base font, we likely had to change the sizes of our
headings to match.

In general, headings follow a predictable decrease in size from first-order down.
Rather than specifying these sizes manually, Automark now uses the em measurement on
fonts in all cases except the base, which uses px (pixel) measurement. Theoretically, you
could assign a font size of 12px to the <body> tag (the base) and expect the rest of the
document to follow suit unless otherwise specified,
everywhere from standard paragraphs to forms and
tables, lists, and so on. As it happens, not all
browsers recognize this inheritance. To cover the
bases, we rely on rule grouping to set a base font.

Rule Grouping to Set a Base Font
body, div, p, label, td, th, ol, ul {

font-family: "Times New Roman";
font-size: 12px;
font-weight: normal;
color: #000000;
text-decoration: none;

}

Now we can safely drop text anywhere in the
document and confidently expect it to appear
“normal” until we specify something else. If we set

Ems

An em is a typographical
unit of measurement that
applies a percent-based
adjustment to a default
standard. If the base
font is 12px and a
heading is set to 2em,
the heading will size to
24 pixels (200% of the
base). A heading of
1.5em would be 150% of
the base size. You may
set ems at less than
zero, such as 0.5em
(50%).

CSS in a Bottle, v.2 7 of 10

headings to carefully calculated ems, we can change the base font size and see the
headings update respectively without any effort. In the following example, <h1> tag
content will always be 2 ems, or twice the size, of the base font, even if the base font
changes.

Example of Em Usage
h1 {

font-family: Verdana;
font-size: 2em;

}

Contextual Inheritance
Rules that rely on contextual inheritance narrow the focus of CSS based on the
placement of HTML tags. To accomplish this, define two selectors or classes (or a mix)
and separate them with a space.

Contextual Selector Rule
p b {

background-color: #FFFF00;
}

This refers to any tag that falls anywhere within a <p> tag.

This would not pick up the CSS.
<p>This would, because B appears within P.</p>
<p><small>This would too, because B still appears within
P.</small></p>

Contextual Class Rule
.example .highlight {

background-color: #FFFF00;
}

This refers to any tag whose class="highlight" that falls anywhere within a tag whose
class="example".

This would not pick up the CSS.
<p class="example">This would, because the
"highlight" tag appears within the "example" tag.</p>

<p class="example"><blockquote>This would
too, because the "highlight" tag still appears within the "example"
tag.</blockquote></p>

It is important to note that with contextual inheritance, it makes no difference how
many HTML tags fall between the two selectors. As long as the second occurs
somewhere within the first, you’re okay. This provides significant consolidation for
navigation. You could define properties for all <a> tags, for example, which fall within
a <table> tag whose class equals the style in question. In the past, Automark added a
class rule to every <a> or <td> tag, but now we can get away with a single reference.

In the example that follows, all of the anchor tags may be changed with a single
tweak to the class attribute of the <table> tag (see next page). In addition, the volume
of code text in the HTML has been reduced.

CSS in a Bottle, v.2 8 of 10

Consolidated Navigation
.navSub01 a { [declarations] }
...
<table class="navSub01">
<tr>
 <td>
 Link 01
 Link 02
 Link 03
 Link 04
 Link 05
 </td>
<tr>
<table>

Contextual rules can be multi-stacked to produce a remarkable effect in lists. By
extending the tag, for instance, you can replace the bullets with graphics that change
according to list depth (first-order circles, sub-order squares, sub-sub-order bagels, etc.).
Contextual inheritance offers this kind of muscle without touching the HTML if you go
the route of selector rules.

Contextual Selector Rules that Extend a List
ul {
 list-style-image: url(circle.gif);
}
ul ul {
 list-style-image: url(square.gif);
}
ul ul ul {
 list-style-image: url(bagel.gif);
}

Child Inheritance
Rules that rely on child inheritance are similar to contextual rules. They also narrow the
focus of CSS based on placement of HTML tags, but HTML tags referenced by child
rules must be immediately adjacent, with no tags between. To accomplish this, define
two selectors or classes (or a mix) and separate them with a greater-than sign (>).

Child Selectors
p > b {

background-color: #FFFF00;
}

This refers to any tag that falls immediately within a <p> tag.

This would not pick up the CSS background color.
<p>This would, because B is immediately within P.</p>
<p><small>This would not, because another tag comes between B and
P.</small></p>

CSS in a Bottle, v.2 9 of 10

Coding Guidelines

Rule Appearance
Rules may be collapsed into a single line without affecting usefulness. TopStyle allows
you to toggle between these formats effortlessly.

Expanded Rule
h1 {
 font-family: Arial;
 font-size: 20px;
}

Collapsed Rule
h1 { font-family: Arial; font-size: 20px; }

Commenting
Comments in CSS files clarify formatting choices for fellow developers. To include text
that is not part of a CSS rule, simply sandwich your comments between the proper
comment demarcation, /* ... */.

Comment Example
/* This is a comment and will not appear in the style. */
.example {

background-color: #FFFF00;
}

Pratfalls
In order to provide cross-browser compatibility, follow the guidelines below.

• Class names cannot contain spaces. If they do, the rule will be misconstrued as an
example of contextual inheritance.

• Class names cannot contain underscores (_).
• Class names are case sensitive. At Automark, we use Hungarian Notation (or

Camel Case)in multi-word classes. When combining words, remove spaces and
capitalize the first letter of each word starting with the second word. For
example, “my class rule” becomes “myClassRule.” Acronyms are treated as
words (“my CSS” becomes “myCss”).

Additional Resources

Websites
Index DOT Css
http://www.blooberry.com/indexdot/css/index.html
All the properties (font-size, font- family, text-decoration, etc.), browser compatibility,
and much more.

WCSchools.com
http://www.w3schools.com/css/default.asp
Their motto says it: “the best things in life ARE free.”

http://www.blooberry.com/indexdot/css/index.html
http://www.w3schools.com/css/default.asp

CSS in a Bottle, v.2 10 of 10

Official CSS Website
http://www.w3.org/Style/CSS/

Developer Netscape Issues
http://intra.automark.net/
Research & Development > R&D Resources > Developer Netscape Issues
Written in-house, this document spells out hazards along the path to cross-browser
compatibility.

Reference
Simply by using TopStyle, you have access to Help files that can assist greatly in
understanding CSS syntax. Dreamweaver MX also provides reference materials from
O’Reilly.

http://www.w3.org/Style/CSS/
http://intra.automark.net/

